Part Number Hot Search : 
IPB180N R1767 4100M 402CX5 MB89P AD9281 2N2405 HZ36NBSP
Product Description
Full Text Search
 

To Download AOTF9610 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 AOT12N60 / AOTF12N60 600V, 12A N-Channel MOSFET
formerly engineering part number AOT9610/AOTF9610
General Description
The AOT12N60 & AOTF12N60 have been fabricated using an advanced high voltage MOSFET process that is designed to deliver high levels of performance and robustness in popular AC-DC applications. By providing low RDS(on), Ciss and Crss along with guaranteed avalanche capability these parts can be adopted quickly into new and existing offline power supply designs.
Features
VDS (V) = 700V @ 150C ID = 12A RDS(ON) < 0.55 (VGS = 10V) 100% UIS Tested! 100% R g Tested! C iss , C oss , C rss Tested!
TO-220
Top View
TO-220F
D
G G D G S D S S
Absolute Maximum Ratings TA=25C unless otherwise noted AOT12N60 Parameter Symbol AOTF12N60 VDS Drain-Source Voltage 600 VGS Gate-Source Voltage 30 Continuous Drain Current B Pulsed Drain Current Avalanche Current C Repetitive avalanche energy C Single pulsed avalanche energy Peak diode recovery dv/dt TC=25C B Power Dissipation Derate above 25oC Junction and Storage Temperature Range Maximum lead temperature for soldering purpose, 1/8" from case for 5 seconds Thermal Characteristics Parameter
A,D G C
Units V V A A mJ mJ V/ns W W/ oC C C
TC=25C TC=100C ID IDM IAR EAR EAS dv/dt PD TJ, TSTG TL
12 8.1 48 5.5 450 900 5 223 1.8 -50 to 150 300 AOT12N60 65 0.5 0.56
12* 8.1*
50 0.4
Symbol RJA A RCS Maximum Case-to-Sink RJC Maximum Junction-to-Case D,F * Drain current limited by maximum junction temperature. Maximum Junction-to-Ambient
AOTF12N60 65 -2.5
Units C/W C/W C/W
Alpha & Omega Semiconductor, Ltd.
www.aosmd.com
AOT12N60 / AOTF12N60
Electrical Characteristics (T J=25C unless otherwise noted) Symbol STATIC PARAMETERS BVDSS BVDSS /TJ IDSS IGSS VGS(th) RDS(ON) gFS VSD IS ISM Drain-Source Breakdown Voltage Breakdown Voltage Temperature Coefficient Zero Gate Voltage Drain Current Gate-Body leakage current Gate Threshold Voltage Static Drain-Source On-Resistance Forward Transconductance ID=250A, VGS=0V, TJ=25C ID=250A, VGS=0V, TJ=150C ID=250A, VGS=0V VDS=600V, VGS=0V VDS=480V, TJ=125C VDS=0V, VGS=30V VDS=VGS, ID=250A VGS=10V, ID=6A VDS=40V, ID=6A 3 4 0.46 20 0.72 1 12 48 1400 VGS=0V, VDS=25V, f=1MHz VGS=0V, VDS=0V, f=1MHz 130 10 2.5 1751 164 13 3.3 40.5 VGS=10V, VDS=480V, ID=12A 8.7 17.9 39 VGS=10V, VDS=300V, ID=12A, RG=25 IF=12A,dI/dt=100A/s,VDS=100V 70 122 74 311 5.2 2100 200 16 5 50 11 22 50 85 150 90 373 6.2 600 700 0.65 1 10 100 5 0.55 V V V/ C A nA V S V A A pF pF pF nC nC nC ns ns ns ns ns C
o
Parameter
Conditions
Min
Typ
Max
Units
Diode Forward Voltage IS=1A, VGS=0V Maximum Body-Diode Continuous Current Maximum Body-Diode Pulsed Current
DYNAMIC PARAMETERS Ciss Input Capacitance Coss Crss Rg Output Capacitance Reverse Transfer Capacitance Gate resistance
SWITCHING PARAMETERS Qg Total Gate Charge Qgs Gate Source Charge Qgd tD(on) tr tD(off) tf trr Qrr Gate Drain Charge Turn-On DelayTime Turn-On Rise Time Turn-Off DelayTime Turn-Off Fall Time
Body Diode Reverse Recovery Time Body Diode Reverse Recovery Charge IF=12A,dI/dt=100A/s,VDS=100V
A: The value of R JA is measured with the device in a still air environment with T A =25C. B. The power dissipation PD is based on TJ(MAX)=150C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used. C: Repetitive rating, pulse width limited by junction temperature TJ(MAX)=150C. D. The R JA is the sum of the thermal impedence from junction to case R JC and case to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300 s pulses, duty cycle 0.5% max. F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of TJ(MAX)=150C. G. L=60mH, IAS=5.5A, VDD=50V, RG=25, Starting TJ=25C Rev 0. July 2008
50
THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.
Alpha & Omega Semiconductor, Ltd.
www.aosmd.com
AOT12N60 / AOTF12N60
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
30 10V 25 20 ID (A) 15 10 5 0 0 5 10 15 20 25 30 VDS (Volts) Fig 1: On-Region Characteristics 1.0 2.5 VGS=5.5V 0.1 2 4 6 8 10 ID(A) 6V 6.5V 10 125C 100 VDS=40V -55C
1 25C
VGS(Volts) Figure 2: Transfer Characteristics
200 16
Normalized On-Resistance
0.8 RDS(ON) (m)
2
VGS=10V ID=6A
1.5
0.6 VGS=10V
1
0.4
0.5
0.2 0 5 10
IF=12A,dI/dt=100A/s,VDS=100V IF=12A,dI/dt=100A/s,VDS=100V 0 15 20 25
-100 ID (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage -50 0 50 100 150 200 Temperature (C) Figure 4: On-Resistance vs. Junction Temperature 1.0E+02 1.0E+01 125C
1.2
BVDSS (Normalized)
1.1 1.0E+00 IS (A) 1 1.0E-01 1.0E-02 0.9 1.0E-03 0.8 -100 1.0E-04 -50 0 50
o
50
25C
100
150
200
0.2
0.4
0.6
0.8
1.0
TJ ( C) Figure 5: Break Down vs. Junction Temperature
VSD (Volts) Figure 6: Body-Diode Characteristics
Alpha & Omega Semiconductor, Ltd.
www.aosmd.com
AOT12N60 / AOTF12N60
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
15 VDS=480V ID=12A Capacitance (pF) 1000 10000 Ciss
12
VGS (Volts)
9
Coss
6
100 Crss
3
0 0 30 40 50 Qg (nC) Figure 7: Gate-Charge Characteristics 10 20 60
10 0.1 10 VDS (Volts) Figure 8: Capacitance Characteristics 1 100
100
10s RDS(ON) limited 100s 1ms
100
200 16
10s RDS(ON) limited 100s
10
10
ID (Amps)
ID (Amps)
1
10ms 0.1s DC TJ(Max)=150C TC=25C
1 10 100
1
DC
0.1
0.1
1ms 10ms 0.1s 1s 10s
0.01
IF=12A,dI/dt=100A/s,VDS=100V
0.01 1000 1 10
TJ(Max)=150C TC=25C
100 1000
IF=12A,dI/dt=100A/s,VDS=100V
VDS (Volts)
VDS (Volts) Figure 10: Maximum Forward Biased Safe Operating Area for AOTF12N60 (Note F)
Figure 9: Maximum Forward Biased Safe Operating Area for AOT12N60 (Note F)
14 12 Current rating ID(A) 10 8 6 4 2 0 0 25 50 75 100 125 150 TCASE (C) Figure 11: Current De-rating (Note B)
50
Alpha & Omega Semiconductor, Ltd.
www.aosmd.com
AOT12N60 / AOTF12N60
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
10 ZJC Normalized Transient Thermal Resistance D=Ton/T TJ,PK=TA+PDM.ZJC.RJC RJC=0.45C/W In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
1
0.1 PD 0.01 Single Pulse 0.001 0.00001 0.0001 0.001 0.01 0.1 1 Ton T 10 100
Pulse Width (s) Figure 12: Normalized Maximum Transient Thermal Impedance for AOT12N60 (Note F)
10 ZJC Normalized Transient Thermal Resistance
200 16
D=Ton/T TJ,PK=TA+PDM.ZJC.RJC RJC=2.5C/W In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
1
0.1 PD 0.01 Single Pulse 0.001 0.00001 Ton
T
IF=12A,dI/dt=100A/s,VDS=100V
0.0001
IF=12A,dI/dt=100A/s,VDS=100V 0.001 0.01 0.1
1
10
100
Pulse Width (s) Figure 13: Normalized Maximum Transient Thermal Impedance for AOTF12N60 (Note F)
50
Alpha & Omega Semiconductor, Ltd.
www.aosmd.com
AOT12N60 / AOTF12N60
Gate Charge Test Circuit & Waveform
Vgs Qg
+
VD C
10V
DUT Vgs Ig
+
VDC
Vds
Qgs
Q gd
-
Charge
Resistive Switching Test Circuit & Waveforms
R L Vds Vds
Vgs Rg Vgs
DU T
+
VD C
90% Vdd 10% Vgs
t d(on) tr t on
t d(o ff) t off tf
Unclamped Inductive Switching (UIS) Test Circuit & Waveforms
L Vds Id Vgs Rg DU T Vgs Vgs Vgs Vds EAR 1/2 LI =
2 AR
BVDSS
+
VDC
Vdd
-
Id
I AR
Diode Recovery Tes t Circuit & Waveforms
Vds + DUT Vgs Qrr = - Idt
Vds Vgs Ig
Isd
L
Isd
IF
+
VD C
dI/dt IRM
trr
Vdd Vds
-
Vdd
Alpha & Omega Semiconductor, Ltd.
www.aosmd.com


▲Up To Search▲   

 
Price & Availability of AOTF9610

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X